AUTOIMMUNE DISEASES AND METAL IMPLANTS AND DEVICES Originally Written April 11, 2018; Last Updated October 30, 2019 By Amanda Just, MS, and Jack Kall, DMD, MIAOMT Dedicated to the late Vera Stejskal, PhD, whose life's work is featured in this article

Introduction to autoimmune diseases and metal implants and devices

There are over 80 recognized autoimmune diseases, with some of the most common being diabetes, lupus, multiple sclerosis, rheumatoid arthritis, and celiac disease.¹ In the United States, estimates of people afflicted by these debilitating health conditions range from 14.7 million to 50 million.² The majority of those suffering from autoimmune diseases are women, and the consensus among health groups and researchers alike is that autoimmune diseases are on the rise, with more and more people being stricken with these illnesses each year.

In spite of this growing problem and the increasing burden it carries for patients, their families, the medical community, and society at large, there are still massive gaps in scientific knowledge about autoimmune diseases. However, it is generally agreed that these illnesses are related to genetics and environmental factors. ("Environmental factors" is a phrase that encompasses all aspects of the environment with which humans interact, including bacteria, viruses, chemicals, etc.).

In particular, along with recognizing genetic components of autoimmune diseases, researchers have clearly identified that these health conditions can be caused by metals, pharmaceutical drugs, pollen, infectious agents, molds, and food allergies (such as gluten).³ The fact that the average person's overall exposure to chemicals, including metals, has drastically increased over the past century cannot be overlooked when discussing the synonymous rise of autoimmune illnesses. Dr. Vera Stejskal has explained: "Disregulation of the immune system by chemicals may be one of the reasons why the frequency of allergies and autoimmune diseases increases."⁴

What is autoimmunity and how does it relate to metal implants and devices?

In simple terms, autoimmunity can be defined as a misdirected immune response that occurs when the immune system attacks the body, resulting in autoimmune disease when there is a progression to pathogenic autoimmunity.⁵ Allergy and autoimmunity share characteristics in that both are triggered by an abnormal immune response and both can produce local and systemic inflammation.⁶

Metals have been widely recognized as one of the triggers capable of producing such inflammation. In a 2014 publication, Dr. Vera Stejskal wrote: "Metal-induced inflammation may be involved in the pathology of various autoimmune and allergic diseases, where abnormal fatigue, joint and muscle pain, cognitive impairment and other non-specific symptoms are often present."⁷

In this regard, it is suspected that metal ions released from dental and medical implants and devices can cause inflammation in susceptible subjects.⁸ The release of metal ions from these implants and devices occurs locally (i.e. at the site of the implant/device), but the metal ions are processed both locally and in other parts of the body, and this can prompt an immune reaction.⁹

Reactions are more likely to occur for individuals who are genetically predisposed to having lower excretion rates of metals,¹⁰ as well as other individualized factors. For example, Dr. Ivan Sterzl and his colleagues have reported: "Hypersensitivity to metals results in [a] wide range of clinical and sub-clinical symptoms such as chronic fatigue, depression, sleep disturbances and others. Patients with these symptoms often report intolerance to metal earrings and other metallic devices such as jeans buttons, watches, and intrauterine devices."¹¹

Autoimmune diseases associated with metal implants and devices

Reactions to metal implants and devices can be manifested on the skin or in the oral mucosa, but they can also include more complex immune reactions at the site of the implant (local), at other parts of the body, and/or throughout the body (systemic). Even trace amounts of metals can potentially cause a reaction.¹²

While numerous health conditions have been related to the presence of metals in the body, this report focuses on autoimmunity. Because autoimmune diseases include more than 80 health conditions, the table below represents an abridged list of autoimmune illnesses that have been associated with metals used in dentistry and medicine, including metals in implants, devices, and adjuvants (substances added to vaccines such as aluminum and mercury). Citations for the table are likewise truncated, as there are a large number of scientific research articles about this topic.

Amyotrophic Lateral Sclerosis (Lou Gehrig's Disease) ¹³ ¹⁴ ¹⁵	Autoimmune Thyroiditis ¹⁶ ¹⁷ ¹⁸ ¹⁹ ²⁰ ²¹ ²²
Autoimmune/Inflammatory Syndrome Induced by Adjuvants (ASIA) ^{23 24 25 26}	Autoimmune Disorders/ Immunodeficiency (in general) ^{27 28 29 30 31}
Chronic Fatigue Syndrome (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome) ^{32 33 34 35 36 37 38 39 40}	Crohn's Disease ⁴¹
Diabetes (Type 1 Mellitis) ⁴²	Fibromyalgia ^{43 44 45 46}
Gulf War Syndrome ^{47 48} (listed separately here, although technically classified as ASIA)	Lupus (Systemic Lupus Erythematosus) ^{49–50}
Macrophagic Myofasciitis ^{51 52} (listed separately here, although technically classified as ASIA)	Multiple Sclerosis ^{53 54 55}
Oral Lichen Planus ^{56 57 58 59}	Rheumatoid Arthritis ⁶⁰

Abridged List of Autoimmune Diseases Associated with Metals Used in Dentistry and Medicine

Sources of exposure from metal implants and devices that affect autoimmunity

Metals are ubiquitous in our daily lives, and it is basically impossible to eliminate exposure to them given their presence in our air, water, food, and an increasing number of consumer products. Some metals are recognized as essential to human life and serve important roles within the human body, including chromium, cobalt, copper, iron, manganese, molybdenum, and zinc.⁶¹ However, the beneficial effects of trace elements are based on safe and adequate intake levels, with too little resulting in deficiencies and too much resulting in toxicities.⁶²

Other metals used in dentistry and medicine have no established function in the human body, and in addition to aluminum, which is both a neurotoxin and an immune stimulator,⁶³ these include gold, mercury, nickel, palladium, platinum, silver, and titanium.⁶⁴ Mercury is recognized as being toxic to humans even in low doses,⁶⁵ and researchers have identified chromium, cobalt, copper, gallium, gold, iron, lead, manganese, mercury, nickel, platinum, silver, tin, vanadium, and zinc (among others) as metals of concern due to residential and occupational exposure.⁶⁶

Researchers have also established that chronic exposure to low doses of metals can elicit autoimmunity in genetically susceptible humans.⁶⁷ Dr. Ivan Sterzl and his colleagues have elaborated: "The key factors governing the harmfulness of metals are the cumulative concentration, duration of exposure, and genetic susceptibility. Many harmless metals may become allergens or exert toxicity if administered on a chronic basis."⁶⁸

Dental and medical implants and devices placed directly into the human body merit significant consideration when evaluating the impact of metal exposure levels, especially in susceptible populations. This scrutiny is particularly crucial because the use of metals in dentistry and medicine continues to rise,⁶⁹ as the table below helps to demonstrate, even though it is only an abridged list.

Product	Metals
Dental Bridges, Crowns, Partial Dentures, and Implants	 These items can contain aluminum, chromium, cobalt, copper, gallium, gold, indium, iridium, iron, manganese, nickel, palladium, platinum, silver, titanium, vanadium and more.^{70 71 72 73} Items made of cobalt-chromium-molybdenum steel contain those elements in addition to aluminum, nickel, titanium, and others.⁷⁴ Research has found that some of these dental materials can contain lead.⁷⁵

Abridged List of Metals Used in Dentistry and Medicine

Dental Fillings	 Amalgam (silver) fillings contain about 50% mercury mixed with copper, silver, and tin, and they can also contain zinc⁷⁶ and other metals,⁷⁷ including lead and cadmium.⁷⁸ Some composite fillings, as well as dental cements and root-fillings, can contain titanium dioxide.⁷⁹ Dental gold alloys can also contain copper, gallium, indium, iridium, palladium, nickel, silver, tin, titanium, and zinc,⁸⁰ as well as beryllium.⁸¹
Gynecologic Devices	 Some intrauterine devices (IUDs) contain copper,⁸² and possible contaminants include manganese, nickel, and zinc.⁸³ Permanent contraceptive devices and clips (i.e. tubal ligation) can contain nickel and titanium.⁸⁴
Intravascular Devices (i.e. coronary stents, perforated foramen occluders, pacemakers, and implantable defibrillators)	 Cardiac/intravascular devices can be made of stainless steel⁸⁵ ⁸⁶ (which can contain chromium, manganese, molybdenum, and nickel⁸⁷). They can also be made of chromium, cobalt, molybdenum, and/or nitinol (which is 45% nickel and 55% titanium).⁸⁸ Stents can be coated in gold.⁸⁹ Pacemakers can contain aluminum, nickel, and titanium,⁹⁰ and can be coated in gold.⁹¹
Medication	 Pills can contain titanium dioxide and other metal oxides.⁹² Antacids can contain aluminum.⁹³
Orthodontic Appliances (i.e. bands, braces, brackets, retainers, and wires)	 These can contain nickel^{94 95 96 97} and titanium.^{98 99} They can also contain aluminum, chromium, cobalt, copper, iron, molybdenum, niobium, and vanadium,¹⁰⁰ as well as silicon and other elements.¹⁰¹
Orthopedic Implants (i.e. hip replacements, screws, nails, and clips)	 These often contain chromium, cobalt, nickel, and/or titanium.¹⁰² Items made with stainless steel¹⁰³ contain a large amount of nickel¹⁰⁴ with chromium, manganese, and molybdenum,¹⁰⁵ in addition to other elements.¹⁰⁶ Items made with cobalt-chromium molybdenum steel contain those elements in addition to aluminum, iron, manganese, nickel, titanium, and tungsten.¹⁰⁷ Items made with titanium can also contain aluminum, vanadium, trace amounts of nickel,¹⁰⁸ and other elements.¹⁰⁹ Items made with nitinol contain nickel and titanium.¹¹⁰ Items made with VitalliumTM contain cobalt, chromium, manganese, molybdenum, iron, and other elements.¹¹¹

Surgical Clips and Staples	 Items made with stainless steel can contain chromium, manganese, molybdenum, nickel, and other elements.¹¹² Items made with titanium alloy contain aluminum, nickel, titanium, and vanadium.¹¹³
Vaccines/Flu Shots/Immunoglobulin Preparations	• These can contain aluminum ¹¹⁴ ¹¹⁵ and/or mercury (as thimerosal). ¹¹⁶ ¹¹⁷ ¹¹⁸

Additional considerations for metal exposures:

- Cigarette smoke
- Coins
- Containers including beverage cans and canned food
- Cookware and utensils
- Cosmetic products
- Detergents
- Diet (i.e. fish containing mercury; foods high in nickel such as chocolate, nuts, oatmeal, soya beans, etc.)
- Eye drops, contact lens solution, and eyeglass frames
- Jewelry, belts, watches, accessories, etc.
- Occupational exposures
- Pipes for drinking water, etc.
- Pollution
- Sunscreen
- Toothpaste
- Well water
- Other consumer products

Metal implants and devices and adverse reactions related to autoimmune diseases

To reiterate, metals such as aluminum and mercury are known to be toxic to humans, and it might seem like a moot point to discuss adverse reactions to toxic chemicals. It should also be emphasized that exposure to any metal can elicit a harmful reaction. However, since these metals are still being used in dentistry and medicine, once these obvious dangers are acknowledged, it is helpful to chronicle the array of adverse reactions that can occur with metal exposures, which include toxicity, allergies, and more.

First, it must be understood that genetics play a role in a person's unique response to metal exposure. Jenny Stejskal, MD, and Vera Stejskal, PhD, have explained: "Depending on genetically determined detoxification systems, an individual may tolerate more or less exposure to toxic metals before showing adverse effects. The immunological effects of metals are either non-specific such as immunomodulation or antigen-specific such as allergy and autoimmunity."¹¹⁹ What this means is that patients sensitive to metal can experience reactions in the oral mucosa or skin and/or fatigue and autoimmune diseases.¹²⁰ ¹²¹

Another important factor to consider is the release of metal ions, which can increase the possibility of an immunologic or toxic reaction.¹²² The release of metal ions from metal implants and devices can occur due to mechanical wear, cellular processes, and corrosion from contact with biological fluids such as blood,¹²³ sweat,¹²⁴ and saliva.^{125 126} Electrolytic conditions in the body can also provoke corrosion of metals by generating electrical currents in a phenomenon known as galvanism. This can occur when a combination of metals interacts with other elements in the body. For example, the combination of mercury and gold in the mouth (with saliva serving as the electrolyte) has been recognized as the most common cause of dental galvanic corrosion.¹²⁷ Yet, other metals used in dentistry can similarly produce this effect.^{128 129} As another example, fluoride-containing mouthwash has been recognized as a factor in the corrosion of orthodontic appliances (with the galvanic coupling of metallic orthodontic wires and brackets).¹³⁰ Fluoride has also been linked to the corrosion of titanium dental implants¹³¹ and dental amalgam fillings (all of which contain approximately 50% mercury).¹³²

In some genetically susceptible individuals, metals can also trigger allergies.¹³³ Dr. Vera Stejskal conducted a series of studies that evaluated patients with suspected reactions to their metal devices and implants. Patients were tested for metal hypersensitivities, and results were collected that demonstrated the prevalence of these metal hypersensitivities. While each study included testing for different metals, the studies collectively identified nickel as the most common sensitizer, followed by other metals, including inorganic mercury (i.e. dental amalgam mercury), thimerosal, lead, cadmium, palladium, and gold.¹³⁴ ¹³⁵ ¹³⁶ ¹³⁷ ¹³⁸ Dr. Stejskal also noted that the frequency of titanium allergy is increasing.¹³⁹

Documented rates of metal allergy in other research support Dr. Stejskal's findings and establish that millions of Americans are in danger of having a reaction to dental amalgam fillings and/or medical implants placed into their bodies. According to data presented in a study published in 2018 that used North American Contact Dermatitis Group (NACDG) patch testing results from 5597 patients, nickel was the most commonly detected allergen at 17.5%, and cobalt was the second most common metal allergen at 6.2%.¹⁴⁰ Another study published in the same edition of the journal *Dermatitis* was conducted on 686 adults who were patch tested with the NACDG series and demonstrated that "38.9% of patients had 1 or more positive patch-test reactions to a metal allergen, most commonly nickel (17.4%), mercury (12.3%), and palladium (9.2%)...Among patients with positive reactions to nickel, 34.5%, 15.1%, and 5.0% had positive reactions to 1, 2, or 3 additional metals, respectively."¹⁴¹

Both of the studies mentioned above involved individuals with suspected allergies; yet, the statistics are relevant, as studies involving the general population and the prevalence of metal allergies are rare.¹⁴² Nonetheless, recent studies and reports tend to agree that metal allergies are on the rise.¹⁴³ ¹⁴⁴ Part of this could be caused by increased exposure to metals, including ear/body piercings, because exposure to metals has been cited as a potential trigger for the development of allergies to them.¹⁴⁵ It has also been hypothesized that contact with metals during an infection could increase chances of developing a metal allergy later in life.¹⁴⁶ At any extent, in a 2016 review, researchers from Harvard School of Medicine qualified: "Dermal hypersensitivity to metal is common and can affect up to 15% of the population."¹⁴⁷

However, one issue with calculating the number of patients with adverse reactions to a metallic material is that the onset of symptoms can be delayed and therefore might not be associated with the implant or device. For example, researchers writing about dental amalgam fillings warned: "Sensitization appears most frequently after the amalgam has been present in the mouth for more than 5 years."¹⁴⁸ Another issue is that there may not be any local reaction to help the patient and doctor identify the metal as the culprit in ill health,¹⁴⁹ and even if hypersensitivity reactions are noticed, they can be misdiagnosed as infection.¹⁵⁰

Clinical screening for metal allergy has been recommended,¹⁵¹ and the importance of patients reporting reactions to metals to their doctors has also been emphasized in the scientific literature.¹⁵² ¹⁵³ ¹⁵⁴ ¹⁵⁵ ¹⁵⁶ ¹⁵⁷ In addition to reporting any rashes from jewelry, watches, or other metal exposures, it is essential for each patient to recognize the gamut of symptoms that can be related to the presence of a metal implant or device in their body. It is also vital for patients to remember that sensitization to metal can develop years after an implant or device has been placed and that adverse effects can occur *with or without* the sign of a rash or eruption on the skin or in the mouth.

Allergy testing can be used to assist in identifying some of the individuals susceptible to adverse reactions to metals. Patch testing is generally regarded as the "gold standard" in allergy testing; however, patch testing has also been criticized because it involves directly applying the allergen to the skin, it can exacerbate symptoms in patients, it can result in sensitization, and the results can be affected by other conditions.¹⁵⁸

One relatively new alternative to skin patch testing is known as the Lymphocyte Transformation Test (LTT), which was first used in the 1960s to evaluate certain types of antigens. Two relatively new alternatives to skin patch testing are a modified version of the Lymphocyte Transformation Test (LTT) known as <u>MELISA</u>¹⁵⁹ and the Lymphocyte Response Assay (LRA) by <u>ELISA/ACT</u>.¹⁶⁰ The MELISA test was introduced by Dr. Vera Stejskal in 1994 to test for type IV delayed hypersensitivity to metals, including sensitivity to mercury.¹⁶¹ Much of Dr. Stejskal's work has involved using the testing to help diagnose patients with reactions to metals, thus facilitating the decision to have the metal implants and devices safely removed and replaced with safer alternatives, and then, recording the health outcomes, the majority of which have involved significant improvement.

Another option for testing has been created specifically for dental materials. If this biological testing is used, a patient's blood sample is sent to a laboratory where the serum is evaluated for the presence of IgG and IgM antibodies to the chemical ingredients used in dental products.¹⁶² The patient is then provided with a detailed list of which name-brand dental materials are safe for their use and which ones could result in a reaction. Two labs that currently offer this service are Biocomp Laboratories¹⁶³ and Clifford Consulting and Research.¹⁶⁴

Unfortunately, in some reported cases, the only way to fully establish that a metal implant or device was causing health problems was to have it removed and then document the results. Researchers from Harvard School of Medicine wrote in 2016: "Paradoxically, a patient can sometimes only be diagnosed with metal allergy when the symptoms resolve upon replacement with an immunologically inert implant."¹⁶⁵

Removal of metal implants and devices and potential recovery from autoimmunity

Removal of metal implants and devices is an obvious course of action when adverse effects occur. Indeed, the scientific literature is abundant with studies and cases of individuals improving or recovering from autoimmune diseases *usually within a year or two after removal* of the offending metal, as the following table of selected examples from research shows:

Health Condition/s Improved or Recovered	Implant/Device Removed
Amyotrophic Lateral Sclerosis (Lou Gehrig's Disease) Variant: Progressive Muscular Atrophy	Metal denture and titanium screws in knee, among other therapies ¹⁶⁶
Autoimmune Thyroiditis/ Fatigue	Dental amalgam mercury fillings ¹⁶⁷ ¹⁶⁸ ¹⁶⁹ ¹⁷⁰
Autoimmune/Inflammatory Syndrome Induced by Adjuvants (ASIA)	Nickel-titanium chin implant ¹⁷¹
Chronic Fatigue Syndrome (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome)	Dental amalgam mercury fillings and other metallic dental restorations ¹⁷² ¹⁷³ ¹⁷⁴ ¹⁷⁵ ¹⁷⁶
Chronic Fatigue Syndrome (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome)	Nickel clips from tubal ligation, dental amalgam mercury fillings and other metallic dental restorations ¹⁷⁷
Chronic Fatigue Syndrome (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome)	Skull plate made of aluminum, titanium, and vanadium with nickel impurities ¹⁷⁸
Chronic Fatigue Syndrome (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome)	Titanium screws in cervical vertebra and titanium dental implants ¹⁷⁹

Sampling of Research Documenting Improvement in Autoimmunity upon Metal Implant/Device Removal

International Academy of Oral Medicine and Toxicology (IAOMT) Page 8 www.iaomt.org and www.theSMARTchoice.com

Crohn's Disease	Dental amalgam mercury fillings and other metallic dental restorations ¹⁸⁰
Dermatitis	Cobalt-chromium prosthesis and dental amalgam mercury fillings ¹⁸¹
Dermatitis	Copper IUD ¹⁸²
Fibromyalgia	Dental amalgam mercury fillings and other metallic dental restorations ¹⁸³ ¹⁸⁴ ¹⁸⁵
Multiple Sclerosis	Dental amalgam mercury fillings and other metallic dental restorations ¹⁸⁶ ¹⁸⁷
Multiple symptoms including fatigue, pain, depression, and headache	Dental amalgam mercury fillings and other metallic dental restorations ¹⁸⁸
Oral lichen planus	Dental amalgam mercury fillings and other metallic dental restorations ¹⁸⁹ ¹⁹⁰
Sjögren's Syndrome	Dental amalgam mercury fillings and other metallic dental restorations ¹⁹¹ ¹⁹²
Systemic Lupus Erythematosus	Dental amalgam mercury fillings ¹⁹³

The removal of metal implants and devices should only be conducted by a qualified healthcare professional. This is because an unsafe removal process can cause serious injury (and even death) to the patient, in addition to the possibility of increased metal exposure. For example, if dental amalgam fillings are removed unsafely, patients can be exposed to increased levels of mercury. In her research, Dr. Vera Stejskal specifically warned about applying safety measures during amalgam filling removal.^{194 195} Furthermore, in a clinical study published in 2013, Dr. Paolo Pigatto and his colleagues reported "one major adverse outcome related to dental amalgam removal without safe procedures,"¹⁹⁶ but no side effects were reported with a safe and effective dental amalgam removal.¹⁹⁷

Based on scientific research, the International Academy of Oral Medicine and Toxicology (IAOMT) has developed recommendations known as the <u>Safe Mercury Amalgam Removal</u> <u>Technique (SMART)</u> to assist in mitigating the potential negative outcomes of mercury exposure during amalgam removal.¹⁹⁸ The IAOMT also offers education about alternatives to dental amalgam fillings so that patients can opt for a more "biocompatible" replacement (i.e. one that is best suited for the patient based on safety and personal healthcare needs).

It is important to note that other factors can influence whether or not a patient improves after the removal of a metal implant or device. While many patients improve or even recover, there are some who do not. One obvious reason for this is if the patient is still being exposed to the metal or a different sensitizer through another implant, device, or other source. In a most unfortunate circumstance, patients can even have a reaction to the new implant or device. Thus, it is critical to select a biocompatible replacement. Fortunately, in most cases, metal-free devices such as ceramic options are now available.

Dr. Vera Stejskal has also noted that in order to get well, some patients further require the eradication of *Heliobacter pylori*,¹⁹⁹ the cessation of smoking,^{200 201} and/or the adoption of a low nickel diet.^{202 203} Some medical professionals and researchers have also suggested the need for detoxification and supplements to assist the body in recovering from metal exposure.

Additional impediments in achieving improved health can include the presence of another illness and/or allergy, exposure to certain pesticides, solvents, molds, and foods, hormonal imbalances, stress, a sedentary lifestyle, and countless other factors. For all these reasons and more, it is imperative for patients battling autoimmune diseases to work with their doctors and other healthcare professionals so that toxins and allergens are kept out of their bodies and healthier, safer options are put in to replace them.

For more information about the research of Dr. Vera Stejskal, visit <u>http://www.melisa.org/articles/</u>.

https://www.niehs.nih.gov/health/materials/autoimmune_diseases_508.pdf. Accessed February 22, 2018. ² Autoimmune Registry. Estimates of Prevalence for Autoimmune Disease. Available from:

https://www.medicinenet.com/script/main/art.asp?articlekey=18985. Accessed February 22, 2018.

International Academy of Oral Medicine and Toxicology (IAOMT) Page 10 www.iaomt.org and www.theSMARTchoice.com

¹ National Institute of Environmental Health Science. Autoimmune Diseases. Research Triangle Park, NC: U.S. Department of Health and Human Services. November 2012. Available from:

http://www.autoimmuneregistry.org/autoimmune-statistics/. Accessed February 22, 2018.

³ Stejskal V. Metals as a common trigger of inflammation resulting in non-specific symptoms: diagnosis and treatment. *The Israel Medical Association Journal: IMAJ.* 2014 Dec;16(12):757. Available from http://www.melisa.org/wp-content/uploads/2015/01/Metals-as-a-Common-Trigger-of-Inflammation.pdf. Accessed April 11, 2018.

⁴ Stejskal VD. Human hapten-specific lymphocytes: biomarkers of allergy in man. *Drug Information Journal*. 1997 Oct;31(4):1379. Available from <u>http://www.melisa.org/pdf/dij063.pdf</u>. Accessed April 11, 2018.

⁵ Medicine Net. Medical definition of autoimmunity. Available from:

⁶ Stejskal V. 5. Allergy and autoimmunity caused by metals: a unifying concept. *Vaccines and Autoimmunity*. 2015 May 11:57. Available from <u>http://www.melisa.org/wp-content/uploads/2015/11/Allergy-and-autoimmunity-caused-by-metals-2.pdf</u>. Accessed April 11, 2018.

⁷ Stejskal V. Metals as a common trigger of inflammation resulting in non-specific symptoms: diagnosis and treatment. *The Israel Medical Association Journal: IMAJ*. 2014 Dec;16(12):757. Available from <u>http://www.melisa.org/wp-content/uploads/2015/01/Metals-as-a-Common-Trigger-of-Inflammation.pdf</u>. Accessed April 11, 2018.

⁸ Stejskal V, Hudecek R, Stejskal J, Sterzl I. Diagnosis and treatment of metal-induced side-effects. *Neuro Endocrinol Lett.* 2006 Dec;27(Suppl 1):7. Available from <u>http://www.melisa.org/pdf/Metal-induced-side-effects.pdf</u>. Accessed April 11, 2018.

⁹ Schalock PC, Menné T, Johansen JD, Taylor JS, Maibach HI, Lidén C, Bruze M, Thyssen JP. Hypersensitivity reactions to metallic implants–diagnostic algorithm and suggested patch test series for clinical use. *Contact Dermatitis*. 2012 Jan 1;66(1):5. Available from <u>https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-0536.2011.01971.x</u>. Accessed April 11, 2018.

¹⁰ Hybenova M, Hrda P, Prochazkova J, Stejskal V, Sterzl I. The role of environmental factors in autoimmune thyroiditis. *Neuroendocrinology Letters*. 2010 Jan 1;31:284. Available from <u>http://www.melisa.org/wp-content/uploads/2016/09/the-role-of-environmental-facotirs-and-autoimmune-throiditis-2.pdf</u>. Accessed April 11, 2018.

¹¹ Sterzl I, Prochazkova J, Hrda P, Matucha P, Bartova J, Stejskal V. Removal of dental amalgam decreases anti-TPO and anti-Tg autoantibodies in patients with autoimmune thyroiditis. *Neuroendocrinology Letters*. 2006 Dec;27:103. Available from <u>http://www.melisa.org/pdf/Sterzl_Am_2006.pdf</u>. Accessed April 11, 2018.

¹³ Redhe O, Pleva J. Recovery of amyotrophic lateral sclerosis and from allergy after removal of dental amalgam fillings. *Int J Risk & Safety in Med.* 1994; 4(3): 229-236. Available from

https://www.researchgate.net/profile/Jaro_Pleva/publication/235899060_Recovery_from_amyotrophic_lateral_sclerosis_a nd from allergy after removal of dental amalgam fillings/links/0fcfd513f4c3e10807000000.pdf. Accessed December 16, 2015.

¹⁴ Stejskal J, Stejskal VD. The role of metals in autoimmunity and the link to neuroendocrinology. *Neuroendocrinology Letters*. 1999;20(6):351-66. Available from <u>http://www.melisa.org/pdf/neuroen.pdf</u>. Accessed April 11, 2018.

¹⁵ Mangelsdorf I, Walach H, Mutter J. Healing of Amyotrophic Lateral Sclerosis: a case report. *Complementary Medicine Research*. 2017;24(3):175-81. Available from: <u>https://www.karger.com/Article/Pdf/477397</u>. Accessed March 15, 2018.

¹⁶ Bartova J, Prochazkova J, Kratka Z, Benetkova K, Venclikova Z, Sterzl I. Dental amalgam as one of the risk factors in autoimmune diseases. *Neuro Endocrinol Lett.* 2003; 24(1/2):65-67. Available from

http://www.academia.edu/download/42265954/NEL241203A09 Bartova--Sterzl wr.pdf. Accessed April 11, 2018. ¹⁷ Hybenova M, Hrda P, Prochazkova J, Stejskal V, Sterzl I. The role of environmental factors in autoimmune thyroiditis. Neuroendocrinol. Lett. 2010 Jan 1;31:283-9. Available from <u>http://www.melisa.org/wp-content/uploads/2016/09/the-role-of-environmental-facotirs-and-autoimmune-throiditis-2.pdf.</u> Accessed April 11, 2018.

¹⁸ Prochazkova J, Sterzl I, Kucerkova H, Bartova J, Stejskal VDM. The beneficial effect of amalgam replacement on health in patients with autoimmunity. *Neuroendocrinology Letters*. 2004; 25(3): 211-218. Available from: http://www.nel.edu/pdf /25 3/NEL250304A07 Prochazkova .pdf. Accessed December 16, 2015.

¹⁹ Stejskal V, Hudecek R, Stejskal J, Sterzl I. Diagnosis and treatment of metal-induced side-effects. *Neuro Endocrinol Lett.* 2006 Dec;27(Suppl 1):7-16. Available from <u>http://www.melisa.org/pdf/Metal-induced-side-effects.pdf</u>. Accessed April 11, 2018.

²⁰ Sterzl I, Procházková J, Hrdá P, Bártová J, Matucha P, Stejskal VD. Mercury and nickel allergy: risk factors in fatigue and autoimmunity. *Neuro Endocrinol Lett.* 1999; 20:221-228. Available from <u>http://www.melisa.org/pdf/nialler.pdf</u>. Accessed April 11, 2018.

²¹ Sterzl I, Prochazkova J, Hrda P, Matucha P, Bartova J, Stejskal V. Removal of dental amalgam decreases anti-TPO and anti-Tg autoantibodies in patients with autoimmune thyroiditis. *Neuro endocrinology Letters*. 2006 Dec;27:25-30. Available from <u>http://www.melisa.org/pdf/Sterzl_Am_2006.pdf</u>. Accessed April 11, 2018.

²² Watad A, David P, Brown S, Shoenfeld Y. Autoimmune/inflammatory syndrome induced by adjuvants and thyroid autoimmunity. *Frontiers in Endocrinology*. 2017 Jan 24;7:150. Available from

https://www.frontiersin.org/articles/10.3389/fendo.2016.00150/full. Accessed April 11, 2018.

²³ Loyo E, Jara LJ, López PD, Puig AC. Autoimmunity in connection with a metal implant: a case of autoimmune/autoinflammatory syndrome induced by adjuvants. *Autoimmunity Highlights*. 2013 Apr 1;4(1):33-8. Available from https://link.springer.com/article/10.1007/s13317-012-0044-1. Accessed April 11, 2018.

²⁴ Perricone C, Colafrancesco S, Mazor RD, Soriano A, Agmon-Levin N, Shoenfeld Y. Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) 2013: Unveiling the pathogenic, clinical and diagnostic aspects. *Journal of Autoimmunity*. 2013 Dec 1;47:1-6. Available from

https://pdfs.semanticscholar.org/dc62/9d11c0deab26fb3c420dd5176d8ba47f5a76.pdf. Accessed April 11, 2018.

²⁵ Tomljenovic L, Shaw CA. Mechanisms of aluminum adjuvant toxicity and autoimmunity in pediatric populations. *Lupus*. 2012 Feb;21(2):223-30. Available from http://www.vaccineliberationarmy.com/wp-

content/uploads/2012/01/LTShaw-Lupus-2012-Mechanism-of-adjuvant-toxicity-in-pediatric-populations.pdf. Accessed April 11, 2018.

²⁶ Vera-Lastra O, Medina G, Cruz-Dominguez MD, Jara LJ, Shoenfeld Y. Autoimmune/inflammatory syndrome induced by adjuvants (Shoenfeld's syndrome): clinical and immunological spectrum. *Expert Review of Clinical Immunology*. 2013 Apr 1;9(4):361-73. Available from <u>http://vaccinesafetycommission.org/pdfs/15-2013-Expert-Olga-Shoenfeld.pdf</u>. Accessed April 11, 2018.

²⁷ Bartova J, Prochazkova J, Kratka Z, Benetkova K, Venclikova C, Sterzl I. Dental amalgam as one of the risk factors in autoimmune disease. *Neuro Endocrinol Lett.* 2003; 24(1-2): 65-67. Available from

http://www.academia.edu/download/42265954/NEL241203A09_Bartova--Sterzl_wr.pdf. Accessed April 11, 2018.

²⁸ Eggleston DW. Effect of dental amalgam and nickel alloys on T-lymphocytes: preliminary report. *J Prosthet Dent*. 1984; 51(5):617-23. Abstract available from: <u>http://www.sciencedirect.com/science/article/pii/0022391384904049</u>. Accessed December 16, 2015.

International Academy of Oral Medicine and Toxicology (IAOMT) Page 11 www.iaomt.org and www.theSMARTchoice.com

¹² Wood MM, Warshaw EM. Hypersensitivity reactions to titanium: diagnosis and management. *Dermatitis*. 2015 Jan 1;26(1):7-25. Available from <u>https://ceramic-implantology.com/wp-content/uploads/2015/07/documento003.pdf</u>. Accessed April 11, 2018.

²⁹ Lindqvist B, Mörnstad H. Effects of removing amalgam fillings from patients with diseases affecting the immune system. *Medical Science Research*. 1996; 24(5):355-356.
 ³⁰ Prochazkova J, Sterzl I, Kucerkova H, Bartova J, Stejskal VDM. The beneficial effect of amalgam replacement on

³⁰ Prochazkova J, Sterzl I, Kucerkova H, Bartova J, Stejskal VDM. The beneficial effect of amalgam replacement on health in patients with autoimmunity. *Neuroendocrinology Letters*. 2004; 25(3): 211-218. Available from: http://www.nel.edu/pdf /25 3/NEL250304A07 Prochazkova .pdf. Accessed December 16, 2015.

³¹ Venclikova Z, Benada O, Bartova J, Joska L, Mrklas L, Prochazkova J, Stejskal V, Podzimek S. In vivo effects of dental casting alloys. *Neuro Endocrinol Lett.* 2006; 27:61. Abstract available from:

http://europepmc.org/abstract/med/16892010. Accessed December 16, 2015.

³² Kern JK, Geier DA, Bjørklund G, King PG, Homme KG, Haley BE, Sykes LK, Geier MR. Evidence supporting a link between dental amalgams and chronic illness, fatigue, depression, anxiety, and suicide. *Neuro Endocrinol Lett.* 2014; 35(7): 537-52. Available from: <u>http://www.nel.edu/archive_issues/o/35_7/NEL35_7_Kern_537-552.pdf</u>. Accessed December 16, 2015.

³³ Muller K, Valentine-Thon E. Hypersensitivity to titanium: clinical and laboratory evidence. *Neuroendocrinology Letters*. 2006 Dec 1;27(1):31-5. Available from <u>http://www.melisa.org/pdf/Hypersensitivity-titanium.pdf</u>. Accessed April 11, 2018.

³⁴ Stejskal V. 5. Allergy and autoimmunity caused by metals: a unifying concept. *Vaccines and Autoimmunity*. 2015 May 11:57. Available from <u>http://www.melisa.org/wp-content/uploads/2015/11/Allergy-and-autoimmunity-caused-by-metals-2.pdf</u>. Accessed April 11, 2018.

³⁵ Stejskal V. Metals as a common trigger of inflammation resulting in non-specific symptoms: diagnosis and treatment. *The Israel Medical Association journal: IMAJ.* 2014 Dec;16(12):753-8. Available from <u>http://www.melisa.org/wp-</u>content/uploads/2015/01/Metals-as-a-Common-Trigger-of-Inflammation.pdf. Accessed April 11, 2018.

³⁶ Stejskal V, Danersund A, Lindvall A, Hudecek R, Nordman V, Yaqob A, Mayer W, Bieger W, Lindh U. Metal-specific lymphocytes: biomarkers of sensitivity in man. *Neuroendocrinol Lett.* 1999; 20(5): 289-298. Abstract available from: <u>http://www.ncbi.nlm.nih.gov/pubmed/11460087</u>. Accessed December 16, 2015.

³⁷ Stejskal V, Hudecek R, Stejskal J, Sterzl I. Diagnosis and treatment of metal-induced side-effects. *Neuro Endocrinol Lett.* 2006 Dec;27(Suppl 1):7-16. Available from <u>http://www.melisa.org/pdf/Metal-induced-side-effects.pdf</u>. Accessed April 11, 2018.

³⁸ Sterzl I, Prochazkova J, Hrda P, Matucha P, Stejskal VD. Mercury and nickel allergy: risk factors in fatigue and autoimmunity. *Neuroendocrinol Lett.* 1999; 20(3-4):221-228. Available from: <u>http://www.melisa.org/pdf/nialler.pdf</u>. Accessed December 16, 2015.

³⁹ Tomljenovic L, Shaw CA. Mechanisms of aluminum adjuvant toxicity and autoimmunity in pediatric populations. *Lupus*. 2012 Feb;21(2):223-30. Available from <u>http://www.vaccineliberationarmy.com/wp-</u>

content/uploads/2012/01/LTShaw-Lupus-2012-Mechanism-of-adjuvant-toxicity-in-pediatric-populations.pdf. Accessed April 11, 2018.

⁴⁰ Wojcik DP, Godfrey ME, Christie D, Haley BE. Mercury toxicity presenting as chronic fatigue, memory impairment and depression: diagnosis, treatment, susceptibility, and outcomes in a New Zealand general practice setting: 1994-2006. *Neuro Endocrinol Lett.* 2006; 27(4): 415-423. Abstract available from: <u>http://europepmc.org/abstract/med/16891999</u>. Accessed December 16, 2015.

⁴¹ Stejskal V, Hudecek R, Stejskal J, Sterzl I. Diagnosis and treatment of metal-induced side-effects. *Neuro Endocrinol Lett.* 2006 Dec;27(Suppl 1):7-16. Available from <u>http://www.melisa.org/pdf/Metal-induced-side-effects.pdf</u>. Accessed April 11, 2018.

⁴² Tomljenovic L, Shaw CA. Mechanisms of aluminum adjuvant toxicity and autoimmunity in pediatric populations.
 Lupus. 2012 Feb;21(2):223-30. Available from http://www.vaccineliberationarmy.com/wp-

content/uploads/2012/01/LTShaw-Lupus-2012-Mechanism-of-adjuvant-toxicity-in-pediatric-populations.pdf. Accessed April 11, 2018.

⁴³ Kern JK, Geier DA, Bjørklund G, King PG, Homme KG, Haley BE, Sykes LK, Geier MR. Evidence supporting a link between dental amalgams and chronic illness, fatigue, depression, anxiety, and suicide. *Neuro Endocrinol Lett.* 2014; 35(7): 537-52. Available from: <u>http://www.nel.edu/archive_issues/o/35_7/NEL35_7_Kern_537-552.pdf</u>. Accessed December 16, 2015.

⁴⁴ Stejskal V. Metals as a common trigger of inflammation resulting in non-specific symptoms: diagnosis and treatment. *The Israel Medical Association journal: IMAJ.* 2014 Dec;16(12):753-8. Available from http://www.melisa.org/wp-content/uploads/2015/01/Metals-as-a-Common-Trigger-of-Inflammation.pdf. Accessed April 11, 2018.

⁴⁵ Stejskal V, Hudecek R, Stejskal J, Sterzl I. Diagnosis and treatment of metal-induced side-effects. *Neuro Endocrinol Lett.* 2006 Dec;27(Suppl 1):7-16. Available from <u>http://www.melisa.org/pdf/Metal-induced-side-effects.pdf</u>. Accessed April 11, 2018.

⁴⁶ Stejskal V, Öckert K, Bjørklund G. Metal-induced inflammation triggers fibromyalgia in metal-allergic patients. *Neuroendocrinology Letters*. 2013 Jan 1;34(6):559-65. Available from <u>http://www.melisa.org/wp-content/uploads/2013/04/Metal-induced-inflammation.pdf</u>. Accessed April 11, 2018. ⁴⁷ Crisponi G, Fanni D, Gerosa C, Nemolato S, Nurchi VM, Crespo-Alonso M, Lachowicz JI, Faa G. The meaning of aluminium exposure on human health and aluminium-related diseases. *Biomolecular Concepts*. 2013 Feb 1;4(1):77-87. Available from <u>https://www.degruyter.com/downloadpdf/j/bmc.2013.4.issue-1/bmc-2012-0045/bmc-2012-0045.pdf</u>. Accessed April 11, 2018.

⁴⁸ Tomljenovic L, Shaw CA. Mechanisms of aluminum adjuvant toxicity and autoimmunity in pediatric populations. *Lupus*. 2012 Feb;21(2):223-30. Available from <u>http://www.vaccineliberationarmy.com/wp-</u>

content/uploads/2012/01/LTShaw-Lupus-2012-Mechanism-of-adjuvant-toxicity-in-pediatric-populations.pdf. Accessed April 11, 2018.

⁴⁹ Prochazkova J, Sterzl I, Kucerkova H, Bartova J, Stejskal VDM. The beneficial effect of amalgam replacement on health in patients with autoimmunity. *Neuroendocrinology Letters*. 2004; 25(3): 211-218. Available from: http://www.nel.edu/pdf /25 3/NEL250304A07 Prochazkova .pdf. Accessed December 16, 2015.

⁵⁰ Tomljenovic L, Shaw CA. Mechanisms of aluminum adjuvant toxicity and autoimmunity in pediatric populations. *Lupus*. 2012 Feb;21(2):223-30. Available from <u>http://www.vaccineliberationarmy.com/wp-</u>

content/uploads/2012/01/LTShaw-Lupus-2012-Mechanism-of-adjuvant-toxicity-in-pediatric-populations.pdf. Accessed April 11, 2018.

⁵¹ Perricone C, Colafrancesco S, Mazor RD, Soriano A, Agmon-Levin N, Shoenfeld Y. Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) 2013: Unveiling the pathogenic, clinical and diagnostic aspects. *Journal of Autoimmunity*. 2013 Dec 1;47:1-6. Available from

https://pdfs.semanticscholar.org/dc62/9d11c0deab26fb3c420dd5176d8ba47f5a76.pdf. Accessed April 11, 2018. ⁵² Tomljenovic L, Shaw CA. Mechanisms of aluminum adjuvant toxicity and autoimmunity in pediatric populations.

Lupus. 2012 Feb;21(2):223-30. Available from <u>http://www.vaccineliberationarmy.com/wp-</u>

content/uploads/2012/01/LTShaw-Lupus-2012-Mechanism-of-adjuvant-toxicity-in-pediatric-populations.pdf. Accessed April 11, 2018.

⁵³ Prochazkova J, Sterzl I, Kucerkova H, Bartova J, Stejskal VDM. The beneficial effect of amalgam replacement on health in patients with autoimmunity. *Neuroendocrinology Letters*. 2004; 25(3): 211-218. Available from: <u>http://www.nel.edu/pdf /25 3/NEL250304A07 Prochazkova .pdf</u>. Accessed December 16, 2015.

⁵⁴ Stejskal J, Stejskal VD. The role of metals in autoimmunity and the link to neuroendocrinology. *Neuroendocrinology Letters*. 1999;20(6):351-66. Available from <u>http://www.melisa.org/pdf/neuroen.pdf</u>. Accessed April 11, 2018.

⁵⁵ Tomljenovic L, Shaw CA. Mechanisms of aluminum adjuvant toxicity and autoimmunity in pediatric populations. *Lupus.* 2012 Feb;21(2):223-30. Available from <u>http://www.vaccineliberationarmy.com/wp-</u>

content/uploads/2012/01/LTShaw-Lupus-2012-Mechanism-of-adjuvant-toxicity-in-pediatric-populations.pdf. Accessed April 11, 2018.

⁵⁶ Athavale PN, Shum KW, Yeoman CM, Gawkrodger DJ. Oral lichenoid lesions and contact allergy to dental mercury and gold. *Contact Dermatitis.* 2003; 49(5): 264-265. Abstract available from:

http://onlinelibrary.wiley.com/doi/10.1111/j.0105-

<u>1873.2003.0225g.x/abstract?userIsAuthenticated=false&deniedAccessCustomisedMessage</u>=. Accessed December 22, 2015.

⁵⁷ Finne K, Goransson K, Winckler L. Oral lichen planus and contact allergy to mercury. *Int J Oral Surg.* 1982; 11(4):236-9. Abstract available from: <u>http://www.sciencedirect.com/science/article/pii/S0300978582800732</u>. Accessed December 22, 2015.

⁵⁸ Lundstrom, IM. Allergy and corrosion of dental materials in patients with oral lichen planus. *Int J Oral Surg.* 1984; 13(1):16. Abstract available from: <u>http://www.sciencedirect.com/science/article/pii/S0300978584800514</u>. Accessed December 22, 2015.

⁵⁹ Stejskal VD, Forsbeck M, Cederbrant KE, Asteman O. Mercury-specific lymphocytes: an indication of mercury allergy in man. *Journal of Clinical Immunology*. 1996 Jan 1;16(1):31-40. Available from <u>http://www.melisa.org/pdf/hg-specific-lymph.pdf</u>. Accessed April 11, 2018.

⁶⁰ Stejskal J, Stejskal VD. The role of metals in autoimmunity and the link to neuroendocrinology. *Neuroendocrinology Letters*. 1999;20(6):351-66. Available from <u>http://www.melisa.org/pdf/neuroen.pdf</u>. Accessed April 11, 2018.

⁶¹ Stejskal J, Stejskal VD. The role of metals in autoimmunity and the link to neuroendocrinology. *Neuroendocrinology Letters*. 1999;20(6):351-66. Available from http://www.melisa.org/pdf/neuroen.pdf. Accessed April 11, 2018.

⁶² Lindh U, Hudecek R, Danersund A, Eriksson S, Lindvall A. Removal of dental amalgam and other metal alloys supported by antioxidant therapy alleviates symptoms and improves quality of life in patients with amalgam-associated ill health. *Neuroendocrinology Letters*. 2002 Oct 1;23(5-6):459. Available from <u>http://www.dr-jacques-</u>

imbeau.com/PDF/Removal%20of%20amalgam%20alleviates%20symptoms.pdf. Accessed April 11, 2018.

⁶³ Tomljenovic L, Shaw CA. Mechanisms of aluminum adjuvant toxicity and autoimmunity in pediatric populations. *Lupus*. 2012 Feb;21(2):223. Available from <u>http://www.vaccineliberationarmy.com/wp-content/uploads/2012/01/LTShaw-</u> <u>Lupus-2012-Mechanism-of-adjuvant-toxicity-in-pediatric-populations.pdf</u>. Accessed April 11, 2018.

> International Academy of Oral Medicine and Toxicology (IAOMT) Page 13 www.iaomt.org and www.theSMARTchoice.com

⁶⁴ Stejskal J, Stejskal VD. The role of metals in autoimmunity and the link to neuroendocrinology. *Neuroendocrinology Letters*. 1999;20(6):351-66. Available from <u>http://www.melisa.org/pdf/neuroen.pdf</u>. Accessed April 11, 2018.

⁶⁵ World Health Organization. Mercury in Health Care: Policy Paper. Geneva, Switzerland; August 2005. Available from WHO Web site: <u>http://www.who.int/water_sanitation_health/medicalwaste/mercurypolpaper.pdf</u>. Accessed December 22, 2015.

⁶⁶ Cited as Mosby CV, Glanze WD, Anderson KN. *Mosby Medical Encyclopedia, The Signet: Revised Edition.* St. Louis. 1996.

In Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. *Interdisciplinary Toxicology*. 2014 Jun 1;7(2):60-72. Available from:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427717/. Accessed February 23, 2018.

⁶⁷ Tibbling L, Thuomas KA, Lenkei R, Stejskal V. Immunological and brain MRI changes in patients with suspected metal intoxication. *Int J Occup Med Toxicol*. 1995 Apr 1;4(2):292. Available from <u>http://www.melisa.org/pdf/brain-mri-changes.pdf</u>. Accessed April 11, 2018.

⁶⁸ Sterzl I, Procházková J, Hrdá P, Bártová J, Matucha P, Stejskal VD. Mercury and nickel allergy: risk factors in fatigue and autoimmunity. *Neuro Endocrinol Lett.* 1999; 20:222. Available from <u>http://www.melisa.org/pdf/nialler.pdf</u>. Accessed April 11, 2018.

⁶⁹ Loyo E, Jara LJ, López PD, Puig AC. Autoimmunity in connection with a metal implant: a case of autoimmune/autoinflammatory syndrome induced by adjuvants. *Autoimmunity Highlights*. 2013 Apr 1;4(1):33-4. Available from <u>https://link.springer.com/article/10.1007/s13317-012-0044-1</u>. Accessed April 11, 2018.

⁷⁰ Muris J, Feilzer AJ. Micro analysis of metals in dental restorations as part of a diagnostic approach in metal allergies. *Neuroendocrinology Letters*. 2006 Dec 1;27(1):49-52. Available from

https://pure.uva.nl/ws/files/2377838/155139_07_1_.pdf, Accessed April 11, 2018.

⁷¹ Knosp H, Holliday RJ, Corti CW. Gold in dentistry: alloys, uses and performance. *Gold Bulletin*. 2003 Sep 1;36(3):93-102. Available from <u>https://link.springer.com/content/pdf/10.1007/bf03215496.pdf</u>. Accessed February 23, 2018.

⁷² MELISA. Metal exposure. Available from <u>http://www.melisa.org/metal-exposure-2/</u>. Accessed February 23, 2018.
 ⁷³ Wood MM, Warshaw EM. Hypersensitivity reactions to titanium: diagnosis and management. *Dermatitis*. 2015 Jan 1;26(1):7-25. Available from <u>https://ceramic-implantology.com/wp-content/uploads/2015/07/documento003.pdf</u>. Accessed April 11, 2018.

⁷⁴ Schalock PC, Menné T, Johansen JD, Taylor JS, Maibach HI, Lidén C, Bruze M, Thyssen JP. Hypersensitivity reactions to metallic implants–diagnostic algorithm and suggested patch test series for clinical use. *Contact Dermatitis*. 2012 Jan 1;66(1):4-19. Available from <u>https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-0536.2011.01971.x</u>. Accessed April 11, 2018.

⁷⁵ Nikolić RS, Kaličanin BM, Nikolić GM. Potentiometric stripping analysis of lead and cadmium leaching from dental prosthetic materials and teeth. *Journal of the Serbian Chemical Society*. 2004;69(7):575-80. Available from http://www.doiserbia.nb.rs/img/doi/0352-5139/2004/0352-51390407575N.pdf. Accessed February 23, 2018.

⁷⁶ MELISA. Metal exposure. Available from <u>http://www.melisa.org/metal-exposure-2/</u>. Accessed February 23, 2018.
 ⁷⁷ Kern JK, Geier DA, Bjørklund G, King PG, Homme KG, Haley BE, Sykes LK, Geier MR. Evidence supporting a link between dental amalgams and chronic illness, fatigue, depression, anxiety, and suicide. *Neuro Endocrinol Lett.* 2014; 35(7): 537-52. Available from: <u>http://www.nel.edu/archive_issues/o/35_7/NEL35_7_Kern_537-552.pdf</u>. Accessed December 16, 2015.

⁷⁸ Nikolić RS, Kaličanin BM, Nikolić GM. Potentiometric stripping analysis of lead and cadmium leaching from dental prosthetic materials and teeth. *Journal of the Serbian Chemical Society*. 2004;69(7):575-80. Available from http://www.doiserbia.nb.rs/img/doi/0352-5139/2004/0352-51390407575N.pdf. Accessed February 23, 2018.

⁷⁹ Stejskal VD. Human hapten-specific lymphocytes: biomarkers of allergy in man. *Drug Information Journal*. 1997 Oct;31(4):1379-82. Available from <u>http://www.melisa.org/pdf/dij063.pdf</u>. Accessed April 11, 2018.

⁸⁰ Knosp H, Holliday RJ, Corti CW. Gold in dentistry: alloys, uses and performance. *Gold Bulletin*. 2003 Sep 1;36(3):93-102. Available from: <u>https://link.springer.com/content/pdf/10.1007/bf03215496.pdf</u>. Accessed February 23, 2018

⁸¹ Stejskal V. Metals as a common trigger of inflammation resulting in non-specific symptoms: diagnosis and treatment. *The Israel Medical Association Journal: IMAJ*. 2014 Dec;16(12):753-8. Available from http://www.melisa.org/wp-content/uploads/2015/01/Metals-as-a-Common-Trigger-of-Inflammation.pdf. Accessed April 11, 2018.

⁸² Teo ZW, Schalock PC. Hypersensitivity reactions to implanted metal devices: facts and fictions. *J Investig Allergol Clin Immunol.* 2016 Jan 1;26(5):279-94. Available from

https://pdfs.semanticscholar.org/698e/e81a0e73f24113646ef6e9d0ec9f34b7e135.pdf. Accessed April 11, 2018.

⁸³ Schalock PC, Menné T, Johansen JD, Taylor JS, Maibach HI, Lidén C, Bruze M, Thyssen JP. Hypersensitivity reactions to metallic implants-diagnostic algorithm and suggested patch test series for clinical use. *Contact Dermatitis*. 2012 Jan 1;66(1):8. Available from <u>https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-0536.2011.01971.x</u>. Accessed April 11, 2018.

International Academy of Oral Medicine and Toxicology (IAOMT) Page 14 www.iaomt.org and www.theSMARTchoice.com ⁸⁴ Teo ZW, Schalock PC. Hypersensitivity reactions to implanted metal devices: facts and fictions. *J Investig Allergol Clin Immunol.* 2016 Jan 1;26(5):283. Available from

https://pdfs.semanticscholar.org/698e/e81a0e73f24113646ef6e9d0ec9f34b7e135.pdf. Accessed April 11, 2018. ⁸⁵ Teo ZW, Schalock PC. Hypersensitivity reactions to implanted metal devices: facts and fictions. *J Investig Allergol Clin Immunol.* 2016 Jan 1;26(5):279-94. Available from

https://pdfs.semanticscholar.org/698e/e81a0e73f24113646ef6e9d0ec9f34b7e135.pdf. Accessed April 11, 2018.

⁸⁶ Schalock PC, Menné T, Johansen JD, Taylor JS, Maibach HI, Lidén C, Bruze M, Thyssen JP. Hypersensitivity reactions to metallic implants–diagnostic algorithm and suggested patch test series for clinical use. *Contact Dermatitis*. 2012 Jan 1;66(1):4-19. Available from <u>https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-0536.2011.01971.x</u>. Accessed April 11, 2018.

⁸⁷ MELISA. Metal exposure. Available from <u>http://www.melisa.org/metal-exposure-2/</u>. Accessed February 23, 2018.

⁸⁸ Schalock PC, Menné T, Johansen JD, Taylor JS, Maibach HI, Lidén C, Bruze M, Thyssen JP. Hypersensitivity reactions to metallic implants–diagnostic algorithm and suggested patch test series for clinical use. *Contact Dermatitis*. 2012 Jan 1;66(1):4-19. Available from <u>https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-0536.2011.01971.x</u>. Accessed April 11, 2018.

⁸⁹ Teo ZW, Schalock PC. Hypersensitivity reactions to implanted metal devices: facts and fictions. *J Investig Allergol Clin Immunol.* 2016 Jan 1;26(5):279-94. Available from

https://pdfs.semanticscholar.org/698e/e81a0e73f24113646ef6e9d0ec9f34b7e135.pdf. Accessed April 11, 2018.

⁹⁰ Schalock PC, Menné T, Johansen JD, Taylor JS, Maibach HI, Lidén C, Bruze M, Thyssen JP. Hypersensitivity reactions to metallic implants-diagnostic algorithm and suggested patch test series for clinical use. *Contact Dermatitis*. 2012 Jan 1;66(1):4-19. Available from <u>https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-0536.2011.01971.x</u>. Accessed April 11, 2018.

⁹¹ Teo ZW, Schalock PC. Hypersensitivity reactions to implanted metal devices: facts and fictions. *J Investig Allergol Clin Immunol.* 2016 Jan 1;26(5):279-94. Available from

https://pdfs.semanticscholar.org/698e/e81a0e73f24113646ef6e9d0ec9f34b7e135.pdf. Accessed April 11, 2018.

⁹² MELISA. Metal exposure. Available from <u>http://www.melisa.org/metal-exposure-2/</u>. Accessed February 23, 2018.

⁹³ MELISA. Metal exposure. Available from <u>http://www.melisa.org/metal-exposure-2/</u>. Accessed February 23, 2018.
 ⁹⁴ Muris J, Feilzer AJ. Micro analysis of metals in dental restorations as part of a diagnostic approach in metal allergies.

Nurse J, Felizer AJ, Micro analysis of metals in dental restorations as part of a diagnostic approach in metal allergies. Neuroendocrinology Letters. 2006 Dec 1;27(1):49-52. Available from

https://pure.uva.nl/ws/files/2377838/155139_07_1_.pdf. Accessed April 11, 2018.

⁹⁵ Schalock PC, Menné T, Johansen JD, Taylor JS, Maibach HI, Lidén C, Bruze M, Thyssen JP. Hypersensitivity reactions to metallic implants–diagnostic algorithm and suggested patch test series for clinical use. *Contact Dermatitis*. 2012 Jan 1;66(1):4-19. Available from <u>https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-0536.2011.01971.x</u>. Accessed April 11, 2018.

⁹⁶ Schiff N, Boinet M, Morgon L, Lissac M, Dalard F, Grosgogeat B. Galvanic corrosion between orthodontic wires and brackets in fluoride mouthwashes. *The European Journal of Orthodontics*. 2006 Jan 20;28(3):298-304. Available from https://academic.oup.com/ejo/article/28/3/298/405288. Accessed April 10, 2018.

⁹⁷ Mikulewicz M, Chojnacka K. Release of metal ions from orthodontic appliances by in vitro studies: a systematic literature review. *Biological Trace Element Research*. 2011 Mar 1;139(3):241-56. Available from

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310133/pdf/12011_2011_Article_9233.pdf. Accessed April 10, 2018. ⁹⁸ Schalock PC, Menné T, Johansen JD, Taylor JS, Maibach HI, Lidén C, Bruze M, Thyssen JP. Hypersensitivity reactions to metallic implants–diagnostic algorithm and suggested patch test series for clinical use. *Contact Dermatitis*. 2012 Jan 1;66(1):4-19. Available from <u>https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-0536.2011.01971.x</u>. Accessed April 11, 2018.

⁹⁹ Schiff N, Boinet M, Morgon L, Lissac M, Dalard F, Grosgogeat B. Galvanic corrosion between orthodontic wires and brackets in fluoride mouthwashes. *The European Journal of Orthodontics*. 2006 Jan 20;28(3):298-304. Available from https://academic.oup.com/ejo/article/28/3/298/405288. Accessed April 10, 2018.

¹⁰⁰ Schiff N, Boinet M, Morgon L, Lissac M, Dalard F, Grosgogeat B. Galvanic corrosion between orthodontic wires and brackets in fluoride mouthwashes. *The European Journal of Orthodontics*. 2006 Jan 20;28(3):298-304. Available from https://academic.oup.com/ejo/article/28/3/298/405288. Accessed April 10, 2018.

¹⁰¹ Mikulewicz M, Chojnacka K. Release of metal ions from orthodontic appliances by in vitro studies: a systematic literature review. *Biological Trace Element Research*. 2011 Mar 1;139(3):241-56. Available from

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310133/pdf/12011_2011_Article_9233.pdf. Accessed April 10, 2018. ¹⁰² Teo ZW, Schalock PC. Hypersensitivity reactions to implanted metal devices: facts and fictions. *J Investig Allergol Clin Immunol*, 2016 Jan 1:26(5):279-94. Available from

https://pdfs.semanticscholar.org/698e/e81a0e73f24113646ef6e9d0ec9f34b7e135.pdf. Accessed April 11, 2018. ¹⁰³ Schalock PC, Menné T, Johansen JD, Taylor JS, Maibach HI, Lidén C, Bruze M, Thyssen JP. Hypersensitivity reactions to metallic implants–diagnostic algorithm and suggested patch test series for clinical use. *Contact Dermatitis*.

> International Academy of Oral Medicine and Toxicology (IAOMT) Page 15 www.iaomt.org and www.theSMARTchoice.com

2012 Jan 1;66(1):4-19. Available from <u>https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-0536.2011.01971.x</u>. Accessed April 11, 2018.

¹⁰⁴ Teo ZW, Schalock PC. Hypersensitivity reactions to implanted metal devices: facts and fictions. *J Investig Allergol Clin Immunol.* 2016 Jan 1;26(5):279-94. Available from

https://pdfs.semanticscholar.org/698e/e81a0e73f24113646ef6e9d0ec9f34b7e135.pdf. Accessed April 11, 2018. ¹⁰⁵ MELISA. Metal exposure. Available from http://www.melisa.org/metal-exposure-2/. Accessed February 23, 2018.

¹⁰⁶ Schalock PC, Menné T, Johansen JD, Taylor JS, Maibach HI, Lidén C, Bruze M, Thyssen JP. Hypersensitivity reactions to metallic implants-diagnostic algorithm and suggested patch test series for clinical use. *Contact Dermatitis*. 2012 Jan 1;66(1):4-19. Available from <u>https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-0536.2011.01971.x</u>. Accessed April 11, 2018.

¹⁰⁷ MELISA. Metal exposure. Available from <u>http://www.melisa.org/metal-exposure-2/</u>. Accessed February 23, 2018. ¹⁰⁸ MELISA. Metal exposure. Available from <u>http://www.melisa.org/metal-exposure-2/</u>. Accessed February 23, 2018.

¹⁰⁹ Schalock PC, Menné T, Johansen JD, Taylor JS, Maibach HI, Lidén C, Bruze M, Thyssen JP. Hypersensitivity reactions to metallic implants-diagnostic algorithm and suggested patch test series for clinical use. *Contact Dermatitis*. 2012 Jan 1;66(1):4-19. Available from <u>https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-0536.2011.01971.x</u>. Accessed April 11, 2018.

¹¹⁰ MELISA. Metal exposure. Available from <u>http://www.melisa.org/metal-exposure-2/</u>. Accessed February 23, 2018.
 ¹¹¹ Schalock PC, Menné T, Johansen JD, Taylor JS, Maibach HI, Lidén C, Bruze M, Thyssen JP. Hypersensitivity reactions to metallic implants-diagnostic algorithm and suggested patch test series for clinical use. *Contact Dermatitis*. 2012 Jan 1;66(1):4-19. Available from <u>https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-0536.2011.01971.x</u>. Accessed April 11, 2018.

¹¹² Schalock PC, Menné T, Johansen JD, Taylor JS, Maibach HI, Lidén C, Bruze M, Thyssen JP. Hypersensitivity reactions to metallic implants–diagnostic algorithm and suggested patch test series for clinical use. *Contact Dermatitis*. 2012 Jan 1;66(1):4-19. Available from <u>https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-0536.2011.01971.x</u>. Accessed April 11, 2018.

¹¹³ Schalock PC, Menné T, Johansen JD, Taylor JS, Maibach HI, Lidén C, Bruze M, Thyssen JP. Hypersensitivity reactions to metallic implants–diagnostic algorithm and suggested patch test series for clinical use. *Contact Dermatitis*. 2012 Jan 1;66(1):4-19. Available from <u>https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-0536.2011.01971.x</u>. Accessed April 11, 2018.

¹¹⁴ Tomljenovic L, Shaw CA. Mechanisms of aluminum adjuvant toxicity and autoimmunity in pediatric populations. *Lupus*. 2012 Feb;21(2):223. Available from <u>http://www.vaccineliberationarmy.com/wp-content/uploads/2012/01/LTShaw-Lupus-2012-Mechanism-of-adjuvant-toxicity-in-pediatric-populations.pdf</u>. Accessed April 11, 2018.

¹¹⁵ MELISA. Metal exposure. Available from <u>http://www.melisa.org/metal-exposure-2/</u>. Accessed February 23, 2018.
 ¹¹⁶ MELISA. Metal exposure. Available from <u>http://www.melisa.org/metal-exposure-2/</u>. Accessed February 23, 2018.
 ¹¹⁷ Stejskal VD, Forsbeck M, Cederbrant KE, Asteman O. Mercury-specific lymphocytes: an indication of mercury allergy in man. *Journal of Clinical Immunology*. 1996 Jan 1;16(1):31-40. Available from <u>http://www.melisa.org/pdf/hg-specific-lymph.pdf</u>. Accessed April 11, 2018.

¹¹⁸ Yaqob A, Danersund A, Stejskal VD, Lindvall A, Hudecek R, Lindh U. Metal-specific lymphocyte reactivity is downregulated after dental metal replacement. *Neuroendocrinology Letters*. 2006 Feb 1;27(1-2):189-97. Available from <u>http://www.melisa.org/pdf/Yaqob_2006.pdf</u>. Accessed April 11, 2018.

¹¹⁹ Stejskal J, Stejskal VD. The role of metals in autoimmunity and the link to neuroendocrinology. *Neuroendocrinology Letters*. 1999;20(6):353. Available from <u>http://www.melisa.org/pdf/neuroen.pdf</u>. Accessed April 11, 2018.

¹²⁰ Stejskal VD, Forsbeck M, Cederbrant KE, Asteman O. Mercury-specific lymphocytes: an indication of mercury allergy in man. *Journal of Clinical Immunology*. 1996 Jan 1;16(1):38. Available from <u>http://www.melisa.org/pdf/hg-specific-</u> <u>lymph.pdf</u>. Accessed April 11, 2018.

¹²¹ Stejskal V, Hudecek R, Stejskal J, Sterzl I. Diagnosis and treatment of metal-induced side-effects. *Neuro Endocrinol Lett.* 2006 Dec;27(Suppl 1):7. Available from <u>http://www.melisa.org/pdf/Metal-induced-side-effects.pdf</u>. Accessed April 11, 2018.

¹²² Muris J, Feilzer AJ. Micro analysis of metals in dental restorations as part of a diagnostic approach in metal allergies. *Neuroendocrinology Letters*. 2006 Dec 1;27(1):50. Available from

https://pure.uva.nl/ws/files/2377838/155139_07_1_.pdf, Accessed April 11, 2018.

¹²³ Teo ZW, Schalock PC. Hypersensitivity reactions to implanted metal devices: facts and fictions. *J Investig Allergol Clin Immunol*. 2016 Jan 1;26(5):284. Available from

https://pdfs.semanticscholar.org/698e/e81a0e73f24113646ef6e9d0ec9f34b7e135.pdf. Accessed April 11, 2018.

¹²⁴ Teo ZW, Schalock PC. Hypersensitivity reactions to implanted metal devices: facts and fictions. *J Investig Allergol Clin Immunol*. 2016 Jan 1;26(5):284. Available from

https://pdfs.semanticscholar.org/698e/e81a0e73f24113646ef6e9d0ec9f34b7e135.pdf. Accessed April 11, 2018.

International Academy of Oral Medicine and Toxicology (IAOMT) Page 16 www.iaomt.org and www.theSMARTchoice.com ¹²⁵ Hosoki M, Nishigawa K. Book Chapter "Dental Metal Allergy" in *Contact Dermatitis*, edited by Young Suck Ro, ISBN 978-953-307-577-8, InTech, December 12, 2011. Available from:

http://www.intechopen.com/download/get/type/pdfs/id/25247. Accessed February 23, 2018. ¹²⁶ Mystkowska J, Niemirowicz-Laskowska K, Łysik D, Tokajuk G, Dąbrowski JR, Bucki R. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction–Corrosion and Friction Aspects. *International Journal of Molecular Sciences.* 2018 Mar 6;19(3):743. Available from: <u>http://www.mdpi.com/1422-0067/19/3/743/htm</u>. Accessed March 15, 2018.

¹²⁷ Pleva J. Corrosion and mercury release from dental amalgam. J. Orthomol. Med. 1989; 4(3): 141-158. Available from https://www.researchgate.net/publication/18600740_Corrosion_of_Dental_Amalgam. Accessed April 10, 2018.

¹²⁸ Pigatto PDM, Brambilla L, Ferrucci S, Guzzi G. Systemic allergic contact dermatitis due to galvanic couple between mercury amalgam and titanium implant. *Skin Allergy Meeting*. 2010.

¹²⁹ Rachmawati D, Buskermolen JK, Scheper RJ, Gibbs S, von Blomberg BM, van Hoogstraten IM. Dental metal-induced innate reactivity in keratinocytes. *Toxicology in Vitro*. 2015; 30(1):325-30. Abstract available from: http://www.sciencedirect.com/science/article/pii/S0887233315002544. Accessed December 17, 2015.

¹³⁰ Schiff N, Boinet M, Morgon L, Lissac M, Dalard F, Grosgogeat B. Galvanic corrosion between orthodontic wires and brackets in fluoride mouthwashes. *The European Journal of Orthodontics*. 2006 Jan 20;28(3):298-304. Available from https://academic.oup.com/ejo/article/28/3/298/405288. Accessed April 10, 2018.

¹³¹ Safioti LM, Kotsakis GA, Pozhitkov AE, Chung WO, Daubert DM. Increased levels of dissolved titanium are associated with peri-implantitis - a cross-sectional study. *J Periodontol*. 2017 May;88(5):436-442.

¹³² Naguib EA, Abd-el-Rahman HA, Salih SA. Role of fluoride on corrodability of dental amalgams. *Egyptian Dental Journal*. 1994 Oct;40(4):909-18. Abstract available from <u>https://www.ncbi.nlm.nih.gov/pubmed/9588134</u>. Accessed April 11, 2018.

¹³³ Stejskal J, Stejskal VD. The role of metals in autoimmunity and the link to neuroendocrinology. *Neuroendocrinology Letters*. 1999;20(6):353. Available from <u>http://www.melisa.org/pdf/neuroen.pdf</u>. Accessed April 11, 2018.

¹³⁴ Yaqob A, Danersund A, Stejskal VD, Lindvall A, Hudecek R, Lindh U. Metal-specific lymphocyte reactivity is downregulated after dental metal replacement. *Neuroendocrinology Letters*. 2006 Feb 1;27(1-2):189-97. Available from <u>http://www.melisa.org/pdf/Yaqob_2006.pdf</u>. Accessed April 11, 2018.

¹³⁵ Stejskal VD, Danersund A, Lindvall A, Hudecek R, Nordman V, Yaqob A, Mayer W, Bieger W, Lindh U. Metalspecific lymphocytes: biomarkers of sensitivity in man. *Neuroendocrinology Letters*. 1999;20(5):289-98. Available from http://www.melisa.org/pdf/biomark.pdf. Accessed April 11, 2018.

¹³⁶ Stejskal V. 5 Allergy and autoimmunity caused by metals: a unifying concept. *Vaccines and Autoimmunity*. 2015 May 11:57. Available from http://www.melisa.org/wp-content/uploads/2015/11/Allergy-and-autoimmunity-caused-by-metals-2.pdf. Accessed April 11, 2018.
 ¹³⁷ Stejskal V. Metals as a common trigger of inflammation resulting in non-specific symptoms: diagnosis and treatment.

¹³⁷ Stejskal V. Metals as a common trigger of inflammation resulting in non-specific symptoms: diagnosis and treatment. *The Israel Medical Association Journal: IMAJ*. 2014 Dec;16(12):753-8. Available from http://www.melisa.org/wp-content/uploads/2015/01/Metals-as-a-Common-Trigger-of-Inflammation.pdf. Accessed April 11, 2018.

¹³⁸ Stejskal V, Öckert K, Bjørklund G. Metal-induced inflammation triggers fibromyalgia in metal-allergic patients. *Neuroendocrinology Letters*. 2013 Jan 1;34(6):559-65. Available from <u>http://www.melisa.org/wp-</u>content/uploads/2013/04/Metal-induced-inflammation.pdf. Accessed April 11, 2018.

¹³⁹ Stejskal V. Metals as a common trigger of inflammation resulting in non-specific symptoms: diagnosis and treatment. *The Israel Medical Association Journal: IMAJ.* 2014 Dec;16(12):753-8. Available from <u>http://www.melisa.org/wp-content/uploads/2015/01/Metals-as-a-Common-Trigger-of-Inflammation.pdf</u>. Accessed April 11, 2018.

¹⁴⁰ DeKoven JG, Warshaw EM, Zug KA, Maibach HI, Belsito DV, Sasseville D, Taylor JS, Fowler Jr JF, Mathias CT, Marks JG, Pratt MD. North American Contact Dermatitis Group Patch Test Results: 2015–2016. *Dermatitis*. 2018 Nov 1;29(6):297-309. Abstract available from: <u>https://www.ncbi.nlm.nih.gov/pubmed/?term=30422882</u>. Accessed October 9, 2019.

¹⁴¹ Rastogi S, Patel KR, Singam V, Lee HH, Silverberg JI. Associations of nickel co-reactions and metal polysensitization in adults. *Dermatitis*. 2018 Nov 1;29(6):316-20. Accessed October 9, 2019.

¹⁴² Hosoki M, Nishigawa K. Book Chapter "Dental Metal Allergy" in *Contact Dermatitis*, edited by Young Suck Ro, ISBN 978-953-307-577-8, InTech, December 12, 2011. Available from: <u>https://www.intechopen.com/download/pdf/25247</u>. Accessed October 9, 2019.

¹⁴³ Hosoki M, Nishigawa K. Book Chapter "**Dental Metal Allergy**" in *Contact Dermatitis*, edited by Young Suck Ro, ISBN 978-953-307-577-8, InTech, December 12, 2011. Available from: <u>https://www.intechopen.com/download/pdf/25247</u>. Accessed October 9, 2019.

¹⁴⁴ Kaplan M. Infections may trigger metal allergies. *Nature*. May 2, 2007. Available from:

http://www.nature.com/news/2007/070430/full/news070430-6.html. Accessed October 9, 2019.

¹⁴⁵ Hosoki M, Nishigawa K. Book Chapter "**Dental Metal Allergy**" in *Contact Dermatitis*, edited by Young Suck Ro, ISBN 978-953-307-577-8, InTech, December 12, 2011. Available from: <u>https://www.intechopen.com/download/pdf/25247</u>. Accessed October 9, 2019.

International Academy of Oral Medicine and Toxicology (IAOMT) Page 17 www.iaomt.org and www.theSMARTchoice.com ¹⁴⁶ Kaplan M. Infections may trigger metal allergies. *Nature*. May 2, 2007. Available from:

http://www.nature.com/news/2007/070430/full/news070430-6.html. Accessed October 9, 2019.

¹⁴⁷ Teo ZW, Schalock PC. Hypersensitivity reactions to implanted metal devices: facts and fictions. *J Investig Allergol Clin Immunol*. 2016 Jan 1;26(5):280. Available from

https://pdfs.semanticscholar.org/698e/e81a0e73f24113646ef6e9d0ec9f34b7e135.pdf. Accessed April 11, 2018. ¹⁴⁸ Djerassi E, Berova N. The possibilities of allergic reactions from silver amalgam restorations. *Internat Dent J.* 1969; 19(4):481-8.

¹⁴⁹ Stejskal V, Hudecek R, Stejskal J, Sterzl I. Diagnosis and treatment of metal-induced side-effects. *Neuro Endocrinol Lett.* 2006 Dec;27(Suppl 1):11. Available from <u>http://www.melisa.org/pdf/Metal-induced-side-effects.pdf</u>. Accessed April 11, 2018.

¹⁵⁰ Schalock PC, Menné T, Johansen JD, Taylor JS, Maibach HI, Lidén C, Bruze M, Thyssen JP. Hypersensitivity reactions to metallic implants–diagnostic algorithm and suggested patch test series for clinical use. *Contact Dermatitis*. 2012 Jan 1;66(1):11. Available from <u>https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-0536.2011.01971.x</u>. Accessed April 11, 2018.

¹⁵¹ Ko JW, Nicholson TA, Hoffler CE, Williams Jr G, Getz C. Metal allergy as a cause of implant failure in shoulder arthroplasty. *Orthopedics*. 2017 Oct 10;40(5):e844-8. Abstract available from

https://www.ncbi.nlm.nih.gov/pubmed/28776630. Accessed April 11, 2018.

¹⁵² Dry J, Leynadier F, Bennani A, Piquet P, Salat J. Intrauterine copper contraceptive devices and allergy to copper and nickel. *Annals of Allergy*. 1978 Sep;41(3):194. Abstract available from <u>https://www.ncbi.nlm.nih.gov/pubmed/686515</u>. Accessed April 11, 2018.

¹⁵³ Schalock PC, Menné T, Johansen JD, Taylor JS, Maibach HI, Lidén C, Bruze M, Thyssen JP. Hypersensitivity reactions to metallic implants–diagnostic algorithm and suggested patch test series for clinical use. *Contact Dermatitis*. 2012 Jan 1;66(1):11. Available from <u>https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-0536.2011.01971.x</u>. Accessed April 11, 2018.

¹⁵⁴ Stejskal VD, Danersund A, Lindvall A, Hudecek R, Nordman V, Yaqob A, Mayer W, Bieger W, Lindh U. Metalspecific lymphocytes: biomarkers of sensitivity in man. *Neuroendocrinology Letters*. 1999;20(5):289-98. Available from <u>http://www.melisa.org/pdf/biomark.pdf</u>. Accessed April 11, 2018.

¹⁵⁵ Stejskal V, Öckert K, Bjørklund G. Metal-induced inflammation triggers fibromyalgia in metal-allergic patients. *Neuroendocrinology Letters*. 2013 Jan 1;34(6):559-65. Available from <u>http://www.melisa.org/wp-</u>content/uploads/2013/04/Metal-induced-inflammation.pdf. Accessed April 11, 2018.

content/uploads/2013/04/Metal-induced-inflammation.pdf. Accessed April 11, 2018. ¹⁵⁶ Sterzl I, Procházková J, Hrdá P, Bártová J, Matucha P, Stejskal VD. Mercury and nickel allergy: risk factors in fatigue and autoimmunity. *Neuroendocrinology Letters*. 1999;20(3):221-8. Available from <u>http://www.melisa.org/pdf/nialler.pdf</u>. Accessed April 11, 2018.

¹⁵⁷ Teo ZW, Schalock PC. Hypersensitivity reactions to implanted metal devices: facts and fictions. *J Investig Allergol Clin Immunol*. 2016 Jan 1;26(5):280. Available from

https://pdfs.semanticscholar.org/698e/e81a0e73f24113646ef6e9d0ec9f34b7e135.pdf. Accessed April 11, 2018.

¹⁵⁸ Stejskal V, Hudecek R, Stejskal J, Sterzl I. Diagnosis and treatment of metal-induced side-effects. *Neuro Endocrinol Lett.* 2006 Dec;27(Suppl 1):7. Available from <u>http://www.melisa.org/pdf/Metal-induced-side-effects.pdf</u>. Accessed April 11, 2018.

¹⁵⁹ Stejskal VD, Cederbrant K, Lindvall A, Forsbeck M. MELISA—an in vitro tool for the study of metal allergy. *Toxicology in vitro*. 1994 Oct 1;8(5):991-1000. Available from <u>http://www.melisa.org/pdf/MELISA-1994.pdf</u>. Accessed March 2019.
 ¹⁶⁰ ELISA/ACT Biotechnologies Website is <u>https://www.elisaact.com/</u>. Accessed March 2019.

¹⁶¹ Stejskal VD, Cederbrant K, Lindvall A, Forsbeck M. MELISA—an in vitro tool for the study of metal allergy.

Toxicology in vitro. 1994 Oct 1;8(5):991-1000. Available from <u>http://www.melisa.org/pdf/MELISA-1994.pdf</u>. Accessed April 11, 2018.

¹⁶² Koral S. A practical guide to compatibility testing for dental materials. IAOMT. Available from:

http://iaomt.org/practical-guide-compatibility-testing-dental-materials/. Accessed February 23, 2018.

¹⁶³ Biocomp Laboratories Website is <u>https://biocomplabs.com/</u>. Accessed March 2019.

¹⁶⁴ Clifford Consulting and Research Website is <u>http://www.ccrlab.com/</u>. Accessed March 2019.

¹⁶⁵ Teo ZW, Schalock PC. Hypersensitivity reactions to implanted metal devices: facts and fictions. *J Investig Allergol Clin Immunol*. 2016 Jan 1;26(5):287. Available from

https://pdfs.semanticscholar.org/698e/e81a0e73f24113646ef6e9d0ec9f34b7e135.pdf. Accessed April 11, 2018. ¹⁶⁶ Mangelsdorf I, Walach H, Mutter J. Healing of Amyotrophic Lateral Sclerosis: a case report. *Complementary Medicine*

Research. 2017;24(3):175-81. Available from https://www.karger.com/Article/4(7/397). Accessed March 15, 2018.

¹⁶⁷ Prochazkova J, Sterzl I, Kucerova H, Bartova J, Stejskal VD. The beneficial effect of amalgam replacement on health in patients with autoimmunity. *Neuroendocrinology Letters*. 2004 Jun 1;25(3):211-8. Available from <u>https://pdfs.semanticscholar.org/8f26/9e9db4bc4dbef4ff3f09eebea4dbb4b06d0a.pdf</u>. Accessed April 11, 2018.

> International Academy of Oral Medicine and Toxicology (IAOMT) Page 18 www.iaomt.org and www.theSMARTchoice.com

¹⁶⁸ Stejskal V, Hudecek R, Stejskal J, Sterzl I. Diagnosis and treatment of metal-induced side-effects. *Neuro Endocrinol Lett.* 2006 Dec;27(Suppl 1):7-16. Available from <u>http://www.melisa.org/pdf/Metal-induced-side-effects.pdf</u>. Accessed April 11, 2018.

¹⁶⁹ Sterzl I, Procházková J, Hrdá P, Bártová J, Matucha P, Stejskal VD. Mercury and nickel allergy: risk factors in fatigue and autoimmunity. *Neuroendocrinology Letters*. 1999;20(3):221-8. Available from <u>http://www.melisa.org/pdf/nialler.pdf</u>. Accessed April 11, 2018.

¹⁷⁰ Sterzl I, Prochazkova J, Hrda P, Matucha P, Bartova J, Stejskal V. Removal of dental amalgam decreases anti-TPO and anti-Tg autoantibodies in patients with autoimmune thyroiditis. *Neuroendocrinology Letters*. 2006 Dec;27:25-30. Available from http://www.melisa.org/pdf/Sterzl_Am_2006.pdf. Accessed April 11, 2018.

¹⁷¹ Loyo E, Jara LJ, López PD, Puig AC. Autoimmunity in connection with a metal implant: a case of autoimmune/autoinflammatory syndrome induced by adjuvants. *Autoimmunity Highlights*. 2013 Apr 1;4(1):33-8. Available from https://link.springer.com/article/10.1007/s13317-012-0044-1. Accessed April 11, 2018.

¹⁷²Stejskal V. Metals as a common trigger of inflammation resulting in non-specific symptoms: diagnosis and treatment. *The Israel Medical Association Journal: IMAJ*. 2014 Dec;16(12):753-8. Available from http://www.melisa.org/wp-content/uploads/2015/01/Metals-as-a-Common-Trigger-of-Inflammation.pdf. Accessed April 11, 2018.

¹⁷³ Stejskal VD, Danersund A, Lindvall A, Hudecek R, Nordman V, Yaqob A, Mayer W, Bieger W, Lindh U. Metalspecific lymphocytes: biomarkers of sensitivity in man. *Neuroendocrinology Letters*. 1999;20(5):289-98. Available from http://www.melisa.org/pdf/biomark.pdf. Accessed April 11, 2018.

¹⁷⁴ Stejskal V, Hudecek R, Stejskal J, Sterzl I. Diagnosis and treatment of metal-induced side-effects. *Neuro Endocrinol Lett.* 2006 Dec;27(Suppl 1):7-16. Available from <u>http://www.melisa.org/pdf/Metal-induced-side-effects.pdf</u>. Accessed April 11, 2018.

¹⁷⁵ Valentine-Thon E, Muller K, Guzzi G, Kreisel S, Ohnsorge P, Sandkamp M. LTT-MELISA (R) is clinically relevant for detecting and monitoring metal sensitivity. *Neuroendocrinology Letters*. 2006 Dec 1;27(1):17-24. Available from http://www.melisa.org/pdf/MELISA-is-clinically-relevant.pdf. Accessed April 11, 2018.

¹⁷⁶ Yaqob A, Danersund A, Stejskal VD, Lindvall A, Hudecek R, Lindh U. Metal-specific lymphocyte reactivity is downregulated after dental metal replacement. *Neuroendocrinology Letters*. 2006 Feb 1;27(1-2):189-97. Available from http://www.melisa.org/pdf/Yaqob 2006.pdf. Accessed April 11, 2018.

¹⁷⁷ Stejskal V. Metals as a common trigger of inflammation resulting in non-specific symptoms: diagnosis and treatment. *The Israel Medical Association Journal: IMAJ*. 2014 Dec;16(12):753-8. Available from http://www.melisa.org/wp-content/uploads/2015/01/Metals-as-a-Common-Trigger-of-Inflammation.pdf. Accessed April 11, 2018.

 ¹⁷⁸ Stejskal V. Metals as a common trigger of inflammation resulting in non-specific symptoms: diagnosis and treatment. *The Israel Medical Association Journal: IMAJ*. 2014 Dec;16(12):753-8. Available from http://www.melisa.org/wp-content/uploads/2015/01/Metals-as-a-Common-Trigger-of-Inflammation.pdf. Accessed April 11, 2018.
 ¹⁷⁹ Muller K, Valentine-Thon E. Hypersensitivity to titanium: clinical and laboratory evidence. *Neuroendocrinology*

¹⁷⁹ Muller K, Valentine-Thon E. Hypersensitivity to titanium: clinical and laboratory evidence. *Neuroendocrinology Letters*. 2006 Dec 1;27(1):31-5. Available from <u>http://www.melisa.org/pdf/Hypersensitivity-titanium.pdf</u>. Accessed April 11, 2018.

¹⁸⁰ Stejskal V, Hudecek R, Stejskal J, Sterzl I. Diagnosis and treatment of metal-induced side-effects. *Neuro Endocrinol Lett.* 2006 Dec;27(Suppl 1):7-16. Available from <u>http://www.melisa.org/pdf/Metal-induced-side-effects.pdf</u>. Accessed April 11, 2018.

¹⁸¹ Valentine-Thon E, Muller K, Guzzi G, Kreisel S, Ohnsorge P, Sandkamp M. LTT-MELISA (R) is clinically relevant for detecting and monitoring metal sensitivity. *Neuroendocrinology Letters*. 2006 Dec 1;27(1):17-24. Available from <u>http://www.melisa.org/pdf/MELISA-is-clinically-relevant.pdf</u>. Accessed April 11, 2018.

¹⁸² Dry J, Leynadier F, Bennani A, Piquet P, Salat J. Intrauterine copper contraceptive devices and allergy to copper and nickel. *Annals of Allergy*. 1978 Sep;41(3):194. Abstract available from <u>https://www.ncbi.nlm.nih.gov/pubmed/686515</u>. Accessed April 11, 2018.

¹⁸³ Stejskal V, Öckert K, Bjørklund G. Metal-induced inflammation triggers fibromyalgia in metal-allergic patients. *Neuroendocrinology Letters*. 2013 Jan 1;34(6):559-65. Available from <u>http://www.melisa.org/wp-</u>content/uploads/2013/04/Metal-induced-inflammation.pdf. Accessed April 11, 2018.

¹⁸⁴ Stejskal V, Hudecek R, Stejskal J, Sterzl I. Diagnosis and treatment of metal-induced side-effects. *Neuro Endocrinol Lett.* 2006 Dec;27(Suppl 1):7-16. Available from <u>http://www.melisa.org/pdf/Metal-induced-side-effects.pdf</u>. Accessed April 11, 2018.

 ¹⁸⁵ Stejskal V. Metals as a common trigger of inflammation resulting in non-specific symptoms: diagnosis and treatment. *The Israel Medical Association Journal: IMAJ*. 2014 Dec;16(12):753-8. Available from <u>http://www.melisa.org/wp-content/uploads/2015/01/Metals-as-a-Common-Trigger-of-Inflammation.pdf</u>. Accessed April 11, 2018.
 ¹⁸⁶ Stejskal V, Hudecek R, Stejskal J, Sterzl I. Diagnosis and treatment of metal-induced side-effects. *Neuro Endocrinol*

¹⁸⁶ Stejskal V, Hudecek R, Stejskal J, Sterzl I. Diagnosis and treatment of metal-induced side-effects. *Neuro Endocrinol Lett.* 2006 Dec;27(Suppl 1):7-16. Available from <u>http://www.melisa.org/pdf/Metal-induced-side-effects.pdf</u>. Accessed April 11, 2018.

International Academy of Oral Medicine and Toxicology (IAOMT) Page 19 www.iaomt.org and www.theSMARTchoice.com ¹⁸⁷ Prochazkova J, Sterzl I, Kucerova H, Bartova J, Stejskal VD. The beneficial effect of amalgam replacement on health in patients with autoimmunity. *Neuroendocrinology Letters*. 2004 Jun 1;25(3):211-8. Available from

https://pdfs.semanticscholar.org/8f26/9e9db4bc4dbef4ff3f09eebea4dbb4b06d0a.pdf. Accessed April 11, 2018. ¹⁸⁸ Lindh U, Hudecek R, Danersund A, Eriksson S, Lindvall A. Removal of dental amalgam and other metal alloys supported by antioxidant therapy alleviates symptoms and improves quality of life in patients with amalgam-associated ill health. *Neuroendocrinology Letters*. 2002 Oct 1;23(5-6):459. Available from http://www.dr-jacques-imbeau.com/PDF/Removal%20of%20amalgam%20alleviates%20symptoms.pdf. Accessed April 11, 2018.

¹⁸⁹ Valentine-Thon E, Muller K, Guzzi G, Kreisel S, Ohnsorge P, Sandkamp M. LTT-MELISA (R) is clinically relevant for detecting and monitoring metal sensitivity. *Neuroendocrinology Letters*. 2006 Dec 1;27(1):17-24. Available from http://www.melisa.org/pdf/MELISA-is-clinically-relevant.pdf. Accessed April 11, 2018.

¹⁹⁰ Stejskal VD, Forsbeck M, Cederbrant KE, Asteman O. Mercury-specific lymphocytes: an indication of mercury allergy in man. Journal of clinical immunology. 1996 Jan 1;16(1):31-40. Available from <u>http://www.melisa.org/pdf/hg-specific-lymph.pdf</u>. Accessed April 11, 2018.

¹⁹¹ Stejskal V, Hudecek R, Stejskal J, Sterzl I. Diagnosis and treatment of metal-induced side-effects. *Neuro Endocrinol Lett.* 2006 Dec;27(Suppl 1):7-16. Available from <u>http://www.melisa.org/pdf/Metal-induced-side-effects.pdf</u>. Accessed April 11, 2018.

¹⁹² Stejskal V. Metals as a common trigger of inflammation resulting in non-specific symptoms: diagnosis and treatment. *The Israel Medical Association Journal: IMAJ*. 2014 Dec;16(12):753-8. Available from http://www.melisa.org/wp-content/uploads/2015/01/Metals-as-a-Common-Trigger-of-Inflammation.pdf. Accessed April 11, 2018.

¹⁹³ Prochazkova J, Sterzl I, Kucerova H, Bartova J, Stejskal VD. The beneficial effect of amalgam replacement on health in patients with autoimmunity. *Neuroendocrinology Letters*. 2004 Jun 1;25(3):211-8. Available from

https://pdfs.semanticscholar.org/8f26/9e9db4bc4dbef4ff3f09eebea4dbb4b06d0a.pdf. Accessed April 11, 2018. ¹⁹⁴ Hybenova M, Hrda P, Prochazkova J, Stejskal V, Sterzl I. The role of environmental factors in autoimmune thyroiditis. *Neuroendocrinol. Lett.* 2010 Jan 1;31:283-9. Available from <u>http://www.melisa.org/wp-content/uploads/2016/09/the-role-of-environmental-factors-and-autoimmune-throiditis-2.pdf.</u> Accessed April 11, 2018.

¹⁹⁵ Stejskal V, Hudecek R, Stejskal J, Sterzl I. Diagnosis and treatment of metal-induced side-effects. *Neuro Endocrinol Lett.* 2006 Dec;27(Suppl 1):7-16. Available from <u>http://www.melisa.org/pdf/Metal-induced-side-effects.pdf</u>. Accessed April 11, 2018.

¹⁹⁶ Pigatto P, Minoia C, Ronchi A, Brambilla L, Ferruci S, Spadari F, Passoni M, Somalvico F, Bombeccari GP, Guzzi G. Allegorical and toxicological aspects in a multiple chemical sensitivity cohort. *Oxidative Medicine and Cellular Longevity*. 2013. Page 5. Available from: <u>https://www.hindawi.com/journals/omcl/2013/356235/</u>. Accessed February 23, 2018.

¹⁹⁷ Pigatto P, Minoia C, Ronchi A, Brambilla L, Ferruci S, Spadari F, Passoni M, Somalvico F, Bombeccari GP, Guzzi G. Allegorical and toxicological aspects in a multiple chemical sensitivity cohort. *Oxidative Medicine and Cellular Longevity*. 2013. Page 6. Available from: <u>https://www.hindawi.com/journals/omcl/2013/356235/</u>. Accessed February 23, 2018.

¹⁹⁸ IAOMT. Safe Removal of Amalgam Fillings. Available from: <u>https://iaomt.org/safe-removal-amalgam-fillings/</u>. Accessed February 23, 2018.

¹⁹⁹ Hybenova M, Hrda P, Prochazkova J, Stejskal V, Sterzl I. The role of environmental factors in autoimmune thyroiditis. *Neuroendocrinol. Lett.* 2010 Jan 1;31:283-9. Available from <u>http://www.melisa.org/wp-content/uploads/2016/09/the-role-of-environmental-facotirs-and-autoimmune-throiditis-2.pdf</u>. Accessed April 11, 2018.

²⁰⁰ Regland B, Zachrisson O, Stejskal V, Gottfries CG. Nickel allergy is found in a majority of women with chronic fatigue syndrome and muscle pain—and may be triggered by cigarette smoke and dietary nickel intake. *Journal of Chronic Fatigue Syndrome*. 2001 Jan 1;8(1):57-65. Available from <u>http://www.melisa.org/pdf/cfs_nickel.pdf</u>. Accessed April 11, 2018.

²⁰¹ Yaqob A, Danersund A, Stejskal VD, Lindvall A, Hudecek R, Lindh U. Metal-specific lymphocyte reactivity is downregulated after dental metal replacement. *Neuroendocrinology Letters*. 2006 Feb 1;27(1-2):189-97. Available from <u>http://www.melisa.org/pdf/Yaqob_2006.pdf</u>. Accessed April 11, 2018.

²⁰² Regland B, Zachrisson O, Stejskal V, Gottfries CG. Nickel allergy is found in a majority of women with chronic fatigue syndrome and muscle pain—and may be triggered by cigarette smoke and dietary nickel intake. *Journal of Chronic Fatigue Syndrome*. 2001 Jan 1;8(1):57-65. Available from http://www.melisa.org/pdf/cfs_nickel.pdf. Accessed April 11, 2018.

²⁰³ Yaqob A, Danersund A, Stejskal VD, Lindvall A, Hudecek R, Lindh U. Metal-specific lymphocyte reactivity is downregulated after dental metal replacement. *Neuroendocrinology Letters*. 2006 Feb 1;27(1-2):189-97. Available from <u>http://www.melisa.org/pdf/Yaqob_2006.pdf</u>. Accessed April 11, 2018.